Non-Gaussian statistics of critical sets in 2D and 3D: Peaks, voids, saddles, genus, and skeleton

作者:Gay Christophe*; Pichon Christophe; Pogosyan Dmitry
来源:Physical Review D - Particles, Fields, Gravitation and Cosmology, 2012, 85(2): 023011.
DOI:10.1103/PhysRevD.85.023011

摘要

The formalism to compute the geometrical and topological one-point statistics of mildly non-Gaussian two-dimensional and three-dimensional (3D) cosmological fields is developed. Leveraging the isotropy of the target statistics, the Gram-Charlier expansion is reformulated with rotation-invariant variables. This formulation allows us to track the geometrical statistics of the cosmic field to all orders. It then allows us to connect the one-point statistics of the critical sets to the growth factor through perturbation theory, which predicts the redshift evolution of higher-order cumulants. In particular, the cosmic nonlinear evolution of the skeleton's length, together with the statistics of extrema and Euler characteristic are investigated in turn. In two dimensions, the corresponding differential densities are analytic as a function of the excursion set threshold and the shape parameter. In 3D, the Euler characteristics and the field isosurface area are also analytic to all orders in the expansion. Numerical integrations are performed and simple fits are provided whenever closed form expressions are not available. These statistics are compared to estimates from N-body simulations and are shown to match well the cosmic evolution up to root mean square of the density field of similar to 0.2. In 3D, gravitational perturbation theory is implemented to predict the cosmic evolution of all the relevant Gram-Charlier coefficients for universes with scale-invariant matter distribution. The one-point statistics of critical sets could be used to constrain primordial non-Gaussianities and the dark energy equation of state on upcoming cosmic surveys; this is illustrated on idealized experiments.

  • 出版日期2012-1-26
  • 单位中国地震局