摘要

Organic fluorescent probes are widely used in bioimaging and bioassays, but the notorious photobleaching hampers their applications. Encapsulation of organic dyes into nanoparticles (NPs) is an effective strategy to minimize photobleaching, but classical organic dye molecules tend to have their fluorescence quenched in aggregate states, which is termed aggregation-caused quenching (ACQ). Here we demonstrate our attempt to tackle this problem through the aggregation-induced emission (AIE) strategy. 3,4: 9,10-Tetracarboxylic perylene bisimide (PBI) is a well-known organic dye with a serious ACQ problem. By attaching two tetraphenylethene (TPE) moieties to the 1,7-positions, the ACQ-characteristic PBI-derivative was converted to an AIE-characteristic molecule. The obtained PBI derivative (BTPEPBI) exhibits several advantages over classical PBI derivatives, including pronounced fluorescence enhancement in aggregate state, red to near infrared emission, and facile fabrication into uniform NPs. Studies on the staining of MCF-7 breast cancer cells and in vivo imaging of a tumor-bearing mouse model with BTPEPBI-containing NPs reveal that they are effective fluorescent probes for cancer cell and in vivo tumor diagnosis with high specificity, high photostability and good fluorescence contrast.