A multi-physics modelling approach to the dynamics of Molten Salt Reactors

作者:Cammi Antonio; Di Marcello Valentino; Luzzi Lelio*; Memoli Vito; Ricotti Marco Enrico
来源:Annals of Nuclear Energy, 2011, 38(6): 1356-1372.
DOI:10.1016/j.anucene.2011.01.037

摘要

This paper presents a multi-physics modelling (MPM) approach developed for the study of the dynamics of the Molten Salt Reactor (MSR), which has been reconsidered as one of the future nuclear power plants in the framework of the Generation IV International Forum for its several potentialities. The proposed multi-physics modelling is aimed at the description of the coupling between heat transfer, fluid dynamics and neutronics characteristics in a typical MSR core channel, taking into account the spatial effects of the most relevant physical quantities. In particular, as far as molten salt thermo-hydrodynamics is concerned, Navier-Stokes equations are used with the turbulence treatment according to the RANS (Reynolds Averaged Navier-Stokes) scheme, while the heat transfer is taken into account through the energy balance equations for the fuel salt and the graphite. As far as neutronics is concerned, the two-group diffusion theory is adopted, where the group constants (computed by means of the neutron transport code NEWT of SCALE 5.1) are included into the model in order to describe the neutron flux and the delayed neutron precursor distributions, the system time constants, and the temperature feedback effects of both graphite and fuel salt. The developed MPM approach is implemented in the unified simulation environment offered by COMSOL Multiphysics (R), and is applied to study the behaviour of the system in steady-state conditions and under several transients (i.e., reactivity insertion due to control rod movements, fuel mass flow rate variations due to the change of the pump working conditions, presence of periodic perturbations), pointing out some advantages offered with respect to the conventional approaches employed in literature for the MSRs.

  • 出版日期2011-6