Mechanistic studies on DNA damage by minor groove binding copper-phenanthroline conjugates

作者:Bales BC; Kodama T; Weledji YN; Pitie M; Meunier B; Greenberg MM*
来源:Nucleic Acids Research, 2005, 33(16): 5371-5379.
DOI:10.1093/nar/gki856

摘要

Copper-phenanthroline complexes oxidatively damage and cleave nucleic acids. Copper bis-phenanthroline and copper complexes of mono- and bis-phenanthroline conjugates are used as research tools for studying nucleic acid structure and binding interactions. The mechanism of DNA oxidation and cleavage by these complexes was examined using two copper-phenanthroline conjugates of the sequence-specific binding molecule, distamycin. The complexes contained either one or two phenanthroline units that were bonded to the DNA binding domain through a linker via the 3-position of the copper ligand. A duplex containing independently generated 2-deoxyribonolactone facilitated kinetic analysis of DNA cleavage. Oxidation rate constants were highly dependent upon the ligand environment but rate constants describing elimination of the alkali-labile 2-deoxyribonolactone intermediate were not. Rate constants describing DNA cleavage induced by each molecule were 11-54 times larger than the respective oxidation rate constants. The experiments indicate that DNA cleavage resulting from beta-elimination of 2-deoxyribonolactone by copper-phenanthroline complexes is a general mechanism utilized by this family of molecules. In addition, the experiments confirm that DNA damage mediated by mono- and bis-phenanthroline copper complexes proceeds through distinct species, albeit with similar outcomes.

  • 出版日期2005