摘要

Successful plant invasions depend, at least partly, on interactions between introduced plants and native plant communities. While allelopathic effects of introduced invaders on native resident species have received much attention, the reverse, i.e. allelopathic effects of native residents on introduced plants, have been largely neglected. Therefore, we tested whether allelopathy of native plant communities decreases their invasibility to introduced plant species. In addition, we tested among the introduced species whether the invasive ones are more tolerant to allelopathy of native plant communities than the non-invasive ones. To test these hypotheses, we grew nine pairs of related (congeneric or confamilial) invasive and non-invasive introduced plant species (i.e. 18 species) in the presence or absence of a native grassland community, which consisted of three common forbs and three common grasses, with or without activated carbon in the soil. Activated carbon reduced the survival percentage and growth of introduced plants in the absence of the native plant community. However, its net effect on the introduced plants was neutral or even slightly positive in the presence of the native community. This might suggest that the native plant community imposed allelopathic effects on the introduced plants, and that these effects were neutralized or reduced by activated carbon. The invasive and non-invasive introduced plants, however, did not differ in their tolerance to such allelopathic effects of the native plant community. Thus, although allelopathy of native plant communities might increase their resistance against introduced plants, there was no evidence that tolerance to allelopathy of native plant communities contributes to the degree of invasiveness of introduced plants.