摘要

Over the past couple of decades the advancements in the areas of information and computational technology allowed for a variety of intelligent transportation systems developments and deployments. This study investigates an advanced traveler information system (ATIS) and (or) an advanced public transit system (APTS) adaptive and real-time transit routing component. The proposed methodology is applied to bus routes with fixed, predefined bus line alignments. It is shown that routing buses on such systems can be modeled in real-time by employing an associated Markov chain with reward model to minimize the impact of congested traffic conditions on the travelers and the overall operation cost of the transit system. A case study using a traffic and transit data from a real-world bus line was used to apply the proposed bus routing approach. It was found that under certain traffic congestion conditions buses should be re-routed to minimize their travel time and the associated system costs. The hypothetical congestion scenarios investigated show that individual bus travel time delays range between 50 and 740 s when the proposed adaptive routing is employed. The proposed methodology is also suitable for application to transit systems that run on a demand-adaptive basis (the bus line alignment changes with the travelers demand). Additional calibration and future integration of the system into specific ATIS and (or) APTS user services will be investigated.

  • 出版日期2012-8