摘要

Calorimetry is the measurement of the heat liberated during energy transformations in chemical reactions. When applied to living organisms, it measures the heat released due to the energy transformations associated with metabolism under both aerobic and anaerobic conditions. This is in contrast to the often-used respirometric techniques for assessing energy turnover, which can only be used under fully aerobic conditions. Accordingly, calorimetry is considered the 'gold standard' for quantifying metabolic rate, yet despite this, it remains a seldom-used technique among comparative physiologists. The reasons for this are related to the expense and perceived difficulty of the technique. We have designed and constructed an inexpensive flow-through calorespirometer capable of detecting rates of metabolic heat loss and oxygen consumption ((M) over dot(O2)) in fish under a variety of environmental conditions over long-term experiments. The metabolic heat of the fish is detected as a voltage by a collection of Peltier units wired in series, while oxygen optodes placed on the inflowing and outflowing water lines are used for the calculation of (M) over dot(O2). The apparatus is constructed in a differential fashion to account for ambient temperature fluctuations. This paper describes the design and construction of the calorespirometer for similar to$1300 CDN. Using the goldfish (Carassius auratus auratus), we show that the calorespirometer is sensitive to changes in metabolic rate brought about by pharmacological manipulation and severe hypoxia exposures.

  • 出版日期2013-12