摘要

Gear flank modification is an important technique for reducing gear running noise and avoiding edge contact for spiral bevel and hypoid gears. This work proposes a novel ease-off flank modification methodology for spiral bevel and hypoid gears made by a modern Cartesian-type hypoid gear generator. The first step is to obtain the desired ease-off topography by calculating and then synthesizing the ease-off along the contact path from the predesigned transmission error and along the contact line from the predesigned bearing ratio. The second step establishes the ease-off sensitivity matrix that corresponds to the pinion head cutter and the six-axis motion parameters of a hypoid generator based on a mathematical model of a modern Cartesian hypoid generator. Finally, linear regression identifies the corrective machine settings for modifying the pinion tooth flanks so that they approximate the desired ease-off topography. We demonstrate the validity of this flank modification method using a numerical example of the Gleason Triac face-hobbed hypoid gear made by a Cartesian-type CNC machine. This proposed flank modification methodology can serve as a basis for developing a general technique of flank modification for other gear types.

  • 出版日期2010-8