摘要

This paper is concerned with designing a networked controller for a mixed flow two-spool turbofan aeroengine with aging and deterioration. Firstly, the state-space representation of the aeroengine considering aging and deterioration is identified, by which the engine system with aging and deterioration is modeled as an uncertain linear system. Then based on this uncertain linear system, theoretical results from the networked control systems and the regional pole assignment are introduced to formulate the networked engine control design in the form of linear matrix inequalities (LMIs). By solving these LMIs simultaneously, a networked engine controller is obtained which guarantees both the robustness against delay/dropout and the satisfactory dynamic performance. Finally, the proposed method is applied to an aerothermodynamic component-level engine simulator to demonstrate its validity and applicability. The corresponding delay/dropout margin is also calculated, which provides reference for the future development of the distributed engine control system.