摘要

The aim of this study is to realize a distribution hydrological model to calculate the rainfall-runoff process precisely for the development of the ravine in the north Loess Plateau. On the basis of the real investigation result to the vertical profile of soil in the Liudaogou drainage basin, which is located in the ravine of wind-water erosion crisscross region in the northern Loess Plateau, a vertical profile model for soil in the study area was set up, and a distribution-type hydrological model was developed by combining GIS with kinematic wave theory. This model was subsequently applied in the experimental drainage basin. The numerical simulation results show that the calculation of the rainfall-runoff process has relatively high precision (error less than 3 %). The model was used to calculate the rainfall-runoff process for 5 years (2005-2009) in the experimental drainage basin to deduce the yearly surface runoff volume and the annual runoff coefficient. The calculated average runoff coefficient for 2005-2009 is 0.11, and the average 5 year precipitation (437 mm) is almost equal to the yearly average precipitation, indicating that the annual runoff coefficient of the experimental drainage basin is approximately 0.10 to 0.15. The study provides a practical numerical method for estimating surface water resources for the wind-water erosion crisscross region of the northern Loess Plateau.