摘要

The main objective of this work is to obtain analytical solutions for thick-walled cylinders subjected to internal and external pressure in which the entire wall is made of functionally graded material or of only a thin functionally graded coating present on the internal homogeneous wall. We assume that the materials are isotropic with constant Poisson%26apos;s ratio; as far as the Young modulus is concerned, we consider a power and an exponential. The proposed analytical solutions show the effects of the different profiles describing the graded properties of the materials on the stress and displacement fields; in addition, comparisons between graded coating and conventional homogeneous coating highlight the advantage of the graded material on the interface stress reduction. Furthermore, we show how even a thin graded coating can be useful to satisfy the requirements of a specific application without having to make an entire wall with graded properties. This investigation permits us to optimize the elastic response of cylinders under pressure by tailoring the thickness variation of the elastic properties and to reduce manufacturing costs given by the technological limitations that occur to produce entire functionally graded walls.

  • 出版日期2012-12