摘要

We report the results of a joint analysis of aeromagnetic, topographic and tectonic data in central-eastern mainland Greece. The emphasis of the analysis is placed on the detection of coherent lineations (discontinuities), collocated and correlated with faulting structures detected by geological field observation. To this effect, edge detection and image enhancement were applied to digital aeromagnetic anomaly maps and digital elevation models, comprising bidirectional differentiation, wavelet transformation (imaging) and spatial decomposition/reconstruction in the wavenumber domain. The analysis facilitated the detection of significant topographic lineaments with NNE-SSW, ENE-WSW and ESE-WNW orientations. Respectively, the aeromagnetic data exhibit two families of significant NE-SW, and one family of ESE-WNW lineaments. The major aeromagnetic and topographic lineaments coincide and have comparable width scales of the order of 2-3 km, indicating that they are produced by significant discontinuities in the upper crust. The kinematics of the NE-SW faults varies between oblique-slip and strike-slip. These faults affect Neogene to Lite Quaternary deposits and have been responsible for the formation of transverse depressions and horsts. This is also corroborated by focal plane solutions from small earthquakes recorded by local networks. The nature of these structures is not yet clear. However, they have been detected by diverse methodologies, they have considerable extent and are apparently active. These attributes suggest that they may possibly be related to the propagation and diffusion of the North Anatolian and North Aegean fault systems into the Greek mainland.

  • 出版日期2010-3