摘要

Selective patterning of bio-substances onto solid platforms is of increasing importance in many areas and widely used for various applications ranging from bio-sensing to cell and tissue engineering. In this study, a new fabrication scheme for the construction of highly selective bio-platforms is presented. The method is based on a direct patterning of poly(ethyleneglycol) (PEG) bio-inert layers on a conducting indium tin oxide (ITO) substrate using electron beam lithography and subsequent assembly of modified amine reactive layers onto the exposed areas. The process is found to create very high "surface contrast" between adhesive and repulsive regions onto the substrate. The platforms are shown to be enable efficient for selective adsorption of a variety of bio-substances including protein arrays, latex beads, and single cells. The high resolution of the technique makes it also applicable for the construction and deposition of bio-structures at the sub-micron scale. The reported technique employs standard lithography and surface chemistry processes, which makes it useful and easy to adopt for a variety of applications and other conductive substrates.

  • 出版日期2011-11-28