A thermal-fluid assessment of a cooled-vessel concept for a VHTR

作者:Kim Min Hwan*; Lim Hong Sik; Lee Won Jae
来源:Nuclear Engineering and Design, 2008, 238(12): 3360-3369.
DOI:10.1016/j.nucengdes.2008.06.022

摘要

Flow distribution and thermal analyses of a conceptual design of a cooled vessel for a very high temperature reactor (VHTR), which has a forced vessel cooling with an internal coolant path through a permanent side reflector, have been performed. A computational fluid dynamics (CFD) code was employed to investigate flow distributions at inlet and upper plenums of the proposed cooled-vessel concept. Thermal-fluid analyses of the cooled vessel during a normal operation were carried out by using the CFD code with the boundary conditions provided by the GAMMA system analysis code. The transient analyses during postulated accidents were conducted by the GAMMA code itself. According to the results, the flow deviation at the riser holes due to a change of the inlet flow path to the core inlet is about +/- 20% which results in about a 3-7% core flow deviation from the average value depending on the upper plenum height. The pressure drops in the inlet and upper plenums are estimated to be from 13 to 25 kPa with a change of the upper plenum height. A cooling flow of more than 4 kg/s is sufficient to maintain the RPV temperature within the required limit during a normal operation. Transient analysis reveals that the reactor vessel is exposed to a temperature above its limit of 371 degrees C but this duration is shorter than the allowable time for a creep region with a sufficient safety margin. The results suggest that the cooled-vessel concept considered in this paper has the potential to be used for a VHTR but further and more detailed studies are required to realize the proposed concept.

  • 出版日期2008-12