摘要

With the aid of a generalized variational method, in this paper, a theoretical model for soft ferromagnetic shells is derived to describe their magnetoelastic behavior in an applied magnetic field. Having made a quantitative comparison between the numerical predictions given by several theoretical models and the experimental results on strains of a cylindrical shell, we find that the predictions got by our model are in good agreement with the experimental data. It is also found that the Moon's model is a special case of the model derived in this paper when the relative magnetic permeability mu(r) > 10(4), which confirms that it is reasonable for the Moon's model to calculate strains of the soft ferromagnetic shells. Having displayed the distribution of the equivalent magnetic force in the length of the cylindrical shell and its circumferential bending strains with different elastic end constraints, we give an explanation for the discrepancy between Moon's analytical results and his experimental ones.