摘要

Cupronickel B10-an important material used in aircraft carriers-exhibits excellent electrochemical and mechanical properties, such as high corrosion resistance and weldability. The Split-Hopkinson pressure bar (SHPB) test is a classical method to obtain the dynamic mechanical properties of solid materials. However, the deformation temperature has long been ignored in SHPB studies, which results in low accuracy of the material constitutive model. Thus, in this study, a new method for obtained the deformation temperature was proposed and the modified material equation was validated using experimental data. Quasi-static compression and SHPB experiments were conducted with a thermocouple. The results revealed that the deformation temperature of the quasi-static tests was nearly zero, whereas that of the SHPB experiments ranged from 40 to 90 A degrees C. Therefore, the method developed to describe the deformation temperature can be used to improve the precision of SHPB experiments, as demonstrated for the case of cupronickel B10.