摘要

Deposition rate is known to affect the relative stability of vapor-deposited glasses; slower rates give more stable materials due to enhanced mobility at the free surface of the film. Here we show that the deposition rate can affect both the thermodynamic and kinetic stabilities of N,N'-bis(3-methylphenyl)-N,N'-diphenylbenzidine (TPD) and N,N'-di-[(1-naphthyl)-N,N'-diphenyl]1,1'-biphenyl)-4,4'-diamine (NPD) glasses used as hole transport layers for organic light emitting diodes (OLEDs). A simple, low-vacuum glass sublimation apparatus and a high vacuum deposition chamber were used to deposit the glass. 50 mu m thick films were deposited in the sublimation apparatus and characterized by differential scanning calorimetry while 75 nm thick films were prepared in the high vacuum chamber and studied by hot-stage spectroscopic ellipsometry (SE). The thermodynamic stability from both preparation chambers was consistent and showed that the fictive temperature (T-fictive) was more than 30 K lower than the conventional glass transition temperature (T-g) at the slowest deposition rates. The kinetic stability, measured as the onset temperature (T-onset) where the glass begins to transform into the supercooled liquid, was 16-17 K greater than T-g at the slowest rates. Tonset was systematically lower for the thin films characterized by SE and was attributed to the thickness dependent transformation of the glass into the supercooled liquid. These results show the first calorimetric characterization of the stability of glasses for OLED applications made by vapor deposition and the first direct comparison of deposition apparatuses as a function of the deposition rate. The ease of fabrication will create an opportunity for others to study the effect of deposition conditions on glass stability. Published by AIP Publishing.

  • 出版日期2017-5-28