摘要

Carbonic anhydrases (CAs) have been demonstrated to play an important role in acid-base regulation in vertebrates. However, the classification and modulatory function of CAs in marine invertebrates, especially their responses to ocean acidification remain largely unknown. Here, a cytosolic alpha-CA (designated as CgCAII-1) was characterized from Pacific oyster Crassostrea gigas and its molecular activities against CO2 exposure were investigated. CgCAII-1 possessed a conserved CA catalytic domain, with high similarity to invertebrate cytoplasmic or mitochondrial alpha-CAs. Recombinant CgCAII-1 could convert CO2 to HCO3 (-) with calculated activity as 0.54 x 10(3) U/mg, which could be inhibited by acetazolamide (AZ). The mRNA transcripts of CgCAII-1 in muscle, mantle, hepatopancreas, gill, and hemocytes increased significantly after exposure to elevated CO2. CgCAII-1 could interact with the hemocyte membrane proteins and the distribution of CgCAII-1 protein became more concentrated and dense in gill and mantle under CO2 exposure. The intracellular pH (pHi) of hemocytes under CO2 exposure increased significantly (p < 0.05) and CA inhibition reduced the pHi value. Besides, there was no increase in CA activity in gill and mantle after CO2 exposure. The impact of CO2 exposure on CA activity coupled with the mRNA expression level and protein translocation of CgCAII-1 provided evidences that CgCAII-1 could respond to ocean acidification and participate in acid-base regulation. Such cytoplasmic CA-based physiological regulation mechanism might explain other physiological responses of marine organisms to OA.