Antimicrobial Effects of Peptides from Human Beta-Defensin-3 on Planktonic and Biofilm States of Streptococci

作者:Zhang, Xi; Adayi, Aidina; Geng, Hongjuan; Zhang, Qian; Liu, Zihao; Gong, Lei; Zhang, Xu; Gao, Ping*
来源:International Journal of Peptide Research and Therapeutics, 2018, 24(4): 489-497.
DOI:10.1007/s10989-017-9634-0

摘要

Human beta-defensin-3 (hBD3) acts as a first line of defense against both Gram-positive and Gram-negative bacteria infection. Streptococci are the significant cause for oral biofilm associated diseases. We synthesized three fragments (hBD3-1, hBD3-2, hBD3-3) from the hBD3 and evaluated the antibacterial efficacy on oral streptococci. All of the three fragments from hBD3 had good estimated solubility and hBD3-3 had a higher net positive charge than others. Structure analysis showed that the three fragments shared stable -sheet structure, but tyrosine were not found in hBD3-2 and hBD3-3 by using Raman and circular dichroism spectroscopy. The inhibition ability of the peptides was examined on the bioactivity of Streptococcus oralis (S.oralis), Streptococcus sanguinis (S. sanguinis) and Streptococcus gordonii (S. gordonii) by minimal inhibitory concentration, minimum bactericidal concentration and anti-biofilm formation test. Three fragments had antimicrobial activity on planktonic state of streptococci, and S. oralis had much more sensitive to the three peptides. Results of antibiofilm experiment showed that streptococci biofilm formation was more sensitive to hBD3-3. Confocal laser scanning microscopy and scanning electron microscopy showed the decrease of biomass and bacterial morphology destruction, which indicated that the antimicrobial mechanism of hBD3-3 might involve an electrostatic charge-based impact on membrane permeability. In conclusion, hBD3-3 possessed the potential capacity for depressing the growth of bacteria, especially first colonizers during the development of oral biofilm. Powerful, endogenous antimicrobial peptide provides the potential to interfere with biofilm by disorganizing early biofilm formation and thereby inhibiting biofilm-associated diseases.