摘要

In this study, a sensitive biosensing interface for protein was reported based on nonconductive insoluble precipitates (IPs) by the biocatalysis of manganese(III) meso-tetrakis (4-N-methylpyridiniumyl)-porphyrin (MnTMPyP), which was intercalated into formed double-strand DNA (dsDNA) scaffold triggered by hybridization chain reaction (HCR). In the proposed impedimetric aptasensor, carcinoembryonic antigen (CEA) and its aptamer were used as testing model. PtPd nanowires (PtPdNWs) with large surface area and superior conductivity were employed as nanocarriers to greatly immobilize biomolecules (e.g. CEA aptamers). Then, two DNA hairpins H1 and H2 were introduced to trigger HCR with the assistance of DNA initiator, resulting in the formation of a long dsDNA scaffold. Meanwhile, mimicking enzyme MnTMPyP molecules were embedded into the resultant dsDNA, in situ generating the complex MnTMPyP-dsDNA with peroxidase-like activity. Under the biocatalysis of MnTMPyP-dsDNA, 3,3-diaminobenzidine (DAB) was oxidized to form nonconductive IPs. As a result, the electron transfer between electrode interface and redox probe was vastly hindered, leading to the significant amplification of electrochemical impedimetric signal. So, greatly improved analytical performances of the proposed aptasensor were achieved with a detection limit as low as 0.030 pg mL(-1) And the successful assay of CEA in human serum samples enabled the developed biosensing platform to have promising potential in bioanalysis.