摘要

Superhydrophobic surface was obtained via a convenient two-step method in this paper on magnesium alloy. The microstructured oxide or hydroxide layers were constructed on the Mg alloy though hydrothermal process. The treated sample was modified with low-energy surface material. After modification, the contact angle of water droplet on the surface is higher than 150 degrees which indicates superhydrophobicity. With scanning electron microscope(SEM), mammillaria-herrerae-like rough structure was obtained. The composition of the superhydrophobic film was analyzed by using x-ray Diffraction instrument and Fourier-transform infrared spectrometer. Moreover, the superhydrophobic surface has good stability. The potentiodynamic polarization test shows that the corrosion current density of superhydrophobic surface was 1-2 order of magnitudes smaller than the bare substrate, which means the anti-corrosion performance has been improved significantly. This route offers an environmentally-benign and effective way to fabricate superhydrophobic surface without using complicated equipment and dangerous chemicals.

全文