摘要

We present a hybrid discrete-dipole approximation (DDA)/layer-multiple-scattering (LMS) method for treating photonic structures consisting of general scatterers. The present method is a major extension of the existing LMS formalism and code that combine the merits of both the DDA and LMS technique. Namely, the new hybrid DDA/LMS technique treats, in principle, scatterers of general (nonspherical) shape that might be anisotropic and/or inhomogeneous, thanks to the DDA component while, at the same time, it incorporates theoretical tools provided by the LMS method, such as the doubling-layer process and the complex frequency band structure that are not met in contemporary electromagnetic solvers. The merging of both techniques is accomplished via a point-matching module that provides the scattering T-matrix of an arbitrary scatterer. To demonstrate the applicability of the new method, we study the optical properties of 2D and 3D plasmonic lattices of gold nanocubes.

  • 出版日期2014-3