摘要

Rac1, a small GTPase, regulates macrophage MMP (matrix metalloproteinase)-9 in an ERK (extracellular-signal-regulated kinase)- and SP (specificity protein)-1-dependent manner. SP-1 contains a PEST (Pro-Glu-Ser-Thr) domain that may modulate protein stability. We hypothesize that Thr(578), Ser(586) and/or Ser(587) in the PEST domain are required for SP-1 stability and MMP-9 expression secondary to activation of ERK, a serine/threonine kinase. We determined the effects of Rac1 and ERK on MMP-9 expression driven by SP-1,7 (wild-type) and the SP-1 mutants T578A, S586A and S587A. Expression of WT and mutant SP-1 increased MMP9 promoter activity in alveolar macrophages. However, constitutively active Rac1 suppressed MMP9 promoter activity in cells expressing SP-1(WT), SP-1(T578A) and SP-1(S587A), but not SP-I-S586A. Furthermore, constitutive ERK activation, which was inhibited by Rac1, significantly increased MMP9 transcription in cells expressing SP-1(WT), but not SP-1(S586A). As Rac1 activation and ERK inactivation increased degradation of SP-1(WT) and not SP-1(S586A), the results of the present study suggest that SP-1 stability mediated at Ser(586) regulates MMP9 transcription. Ex vivo, alveolar macrophages obtained from patients with asbestosis had less MMP-9 expression that was associated with decreased SP-1 expression and ERK activation. These observations demonstrate that Ser(586) in the PEST domain of SP-1 is important for MMP9 gene expression in alveolar macrophages and highlight the importance of these proteins in pulmonary fibrosis.

  • 出版日期2012-7-15