摘要

An optical spectroscopic characterization is carried out on a reactive dye (reactive orange 1). This dye is widely applied in textile coloration. It is a potential candidate for photonics applications. Its absorption cross-section spectra are measured. A fluorescence spectroscopic characterization is undertaken by measuring the fluorescence quantum distributions and fluorescence quantum yields. The saturable absorption is studied by nonlinear transmission measurements with intense picosecond laser pulses (second harmonic pulses of a mode-locked Nd:glass laser). The nonlinear optical absorption and refraction coefficients are measured by using the top-hat Z-scan technique at a wavelength of 532 nm with 35 ps duration pulses. Reactive orange 1 has the two-photon absorption coefficient of 1.20 cm/GW and the nonlinear refraction coefficient of -7.33 X 10(-6) cm(2)/GW, respectively. In reactive orange 1, there occurs fast ground-state recovery by internal conversion likely via conical intersections. Low excited-state absorption and fast ground-state absorption recovery make it an ideal candidate for passive mode-locking of picosecond and femtosecond lasers as well as for fast nonlinear optical gating.

全文