Design and fabrication of insect-inspired composite wings for MAV application using MEMS technology

作者:Bao X Q*; Bontemps A; Grondel S; Cattan E
来源:Journal of Micromechanics and Microengineering, 2011, 21(12): 125020.
DOI:10.1088/0960-1317/21/12/125020

摘要

Insect wings consist of supporting veins and flexible membranes using fibrous composite material. This paper describes a method of wing design and fabrication based on composite, mimicking insect wings through advanced microelectromechanical system (MEMS) technology. SU-8 'fiber' reinforced polydimethylsiloxane (PDMS) membrane forms a fine structure, approaching real wings not only in material conception but also in mechanical performance. Based on a design in its initial stage, a new process was developed integrating all steps into a single procedure. We use a tailored AZ 4562 resist layer as the mold for PDMS wing membrane structuring. A 20 nm hydrophilic oxide layer was grown on the substrate to solve the final lift-off problems which become more severe when the wing membrane gets thinner. The vein thickness can be controlled with high precision by the spin-coating technique. The thickness of artificial membrane can be thinned down to a few microns, thus emulating those of some insects. Our process is compatible with common MEMS technology, and eligible to produce artificial wings of complex geometry and morphology mimicking natural insect wings. Our conclusion is that natural wings can be well mimicked in material conception, weight, venation, size, mass distribution and wing rigidity using hybrid materials. We also show that even using exceedingly compliant material as one composition, composite airfoils can be as light and stiff as insect wings, thereby highlighting the merit of smart material hybridization.

  • 出版日期2011-12