A Millimeter-Wave WPAN Adaptive Phased Array Control Method Using Low-Frequency Part of Signal for Self-Directed System

作者:Ta Tuan Thanh*; Tanifuji Shoichi; Taira Akinori; Kameda Suguru; Suematsu Noriharu; Takagi Tadashi; Tsubouchi Kazuo
来源:IEEE Transactions on Microwave Theory and Techniques, 2015, 63(8): 2682-2691.
DOI:10.1109/TMTT.2015.2443774

摘要

In this paper, we propose a self-directed adaptive phased array control method using the low-frequency part of the signal for a millimeter-wave wireless personal area network, which can reduce the hardware requirement and power consumption compared with those of the conventional digital beamforming method. The signal from each element antenna of the antenna array is phase shifted and down converted to the baseband and then divided into two paths. The first paths are low-pass filtered to extract the low-frequency part of the signals for beamforming control. The second paths from all antennas are combined in-phase in an analog domain and then sampled by two high-speed A/D converters for demodulation. A beamforming algorithm using the sampled low-frequency part of the signal is also proposed. The beamforming calculation time is established as a function of the signal-to-noise ratio, the bandwidth of the low-frequency part, and the required phase control accuracy. The calculated values match the measured results. Using the IEEE 802.15.3c specifications with an eight-element array antenna, the calculation time is less than 5 mu s for initial beam establishment and less than 30 mu s for beam tracking. Therefore, high-speed beamforming is possible while reducing the power consumption.

  • 出版日期2015-8