A Novel Software Simulator Model Based on Active Hybrid Architecture

作者:AbdElHamid Amr*; Zong Peng
来源:International Journal of Aerospace Engineering, 2015, 2015: 107301.
DOI:10.1155/2015/107301

摘要

The simulated training is an important issue for any type of missions such as aerial, ground, sea, or even space missions. In this paper, a new flexible aerial simulator based on active hybrid architecture is introduced. The simulator infrastructure is applicable to any type of training missions and research activities. This software-based simulator is tested on aerial missions to prove its applicability within time critical systems. The proposed active hybrid architecture is introduced via using the VB. NET and MATLAB in the same simulation loop. It exploits the remarkable computational power of MATLAB as a backbone aircraft model, and such mathematical model provides realistic dynamics to the trainee. Meanwhile, the Human-Machine Interface (HMI), the mission planning, the hardware interfacing, data logging, and MATLAB interfacing are developed using VB. NET. The proposed simulator is flexible enough to perform navigation and obstacle avoidance training missions. The active hybrid architecture is used during the simulated training, and also through postmission activities (like the generation of signals playback reports for evaluation purposes). The results show the ability of the proposed architecture to fulfill the aerial simulator demands and to provide a flexible infrastructure for different simulated mission requirements. Finally, a comparison with some existing simulators is introduced.