摘要

The finite-difference method, which is an important numerical tool for solving seismic wave equations, is widely applied in simulation, wave-equation-based migration and inversion. As the seismic wave phase plays a critical role in forward simulation and inversion, it should be preserved during wavefield simulation. In this paper, we propose a type of phase-preserving stereomodelling method, which is simultaneously symplectic and low numerical dispersive. First, we propose three new time-marching schemes for solving wave equations that are optimal symplectic partitioned Runge-Kutta schemes with minimized phase errors. Relevant simulations on a harmonic oscillator show that even after 200 000 temporal iterations, our schemes can still avoid the phase drifting issue that appears in other symplectic schemes. We use these symplectic schemes as time integrators, and a numerically low dispersive operator called the stereomodelling discrete operator as a spatial discretization approach to solve seismic wave equations. Theoretical analysis on the stability conditions shows that the new methods are more stable than previous methods. We also investigate the numerical dispersion relations of the methods proposed in this study. To further investigate phase accuracy, we compare the numerical solutions generated by the proposed methods with analytic solutions. Several numerical experiments indicate that our proposed methods are efficient for various models and perform well with perfectly matched layer boundary conditions.