Substrate-induced band gap in graphene on hexagonal boron nitride: Ab initio density functional calculations

作者:Giovannetti Gianluca*; Khomyakov Petr A; Brocks Geert; Kelly Paul J; van den Brink Jeroen
来源:Physical Review B, 2007, 76(7): 073103.
DOI:10.1103/PhysRevB.76.073103

摘要

We determine the electronic structure of a graphene sheet on top of a lattice-matched hexagonal boron nitride (h-BN) substrate using ab initio density functional calculations. The most stable configuration has one carbon atom on top of a boron atom, and the other centered above a BN ring. The resulting inequivalence of the two carbon sites leads to the opening of a gap of 53 meV at the Dirac points of graphene and to finite masses for the Dirac fermions. Alternative orientations of the graphene sheet on the BN substrate generate similar band gaps and masses. The band gap induced by the BN surface can greatly improve room temperature pinch-off characteristics of graphene-based field effect transistors.

  • 出版日期2007-8