摘要

Wing venation provides useful characters with which to classify extant and fossil insects. Recently, quantification of its shape using landmarks has increased the potential of wing venation to distinguish taxa. However, the use of wing landmarks in phylogenetic analyses remains largely unexplored. Here, we tested landmark analysis under parsimony (LAUP) to include wing shape data in a phylogenetic analysis of hornets and yellow jackets. Using 68 morphological characters, nine genes and wing landmarks, we produced the first total-evidence phylogeny of Vespinae. We also tested the influence of LAUP parameters using simulated landmarks. Our data confirmed that optimization parameters, alignment method, landmark number and, under low optimization parameters, the initial orientation of aligned shapes can influence LAUP results. Furthermore, single landmark configurations never accurately reflected the topology used for data simulation, but results were significantly close when compared to random topologies. Thus, wing landmark configurations were unreliable phylogenetic characters when treated independently, but provided some useful insights when combined with other data. Our phylogeny corroborated the monophyly of most groups proposed on the basis of morphology and showed the fossil Palaeovespa is distantly related to extant genera. Unstable relationships among genera suggest that rapid radiations occurred in the early history of the Vespinae.

  • 出版日期2016-8