摘要

Fringed periodic patterns have been produced by laser interference at 193 nm in an almost continuous 9.5 nm-thick Ag film that exhibits a number density of approximate to 189 mu m(-2) holes. Patterns with four periods in the range of 1.8-10.2 mu m were produced by changing the projection optics. At high fluences, the film breaks up into nanostructures around the regions exposed to intensity maxima due to laser-induced melting. At low fluences, a new process is observed that is triggered at the initial holes of the film by solid-state dewetting. Once the fluence is high enough to prevent the temperature balance across the pattern, mass transport from cold to hot regions is observed, leading to film densification in regions around intensity maxima sites. The novel patterns are thus formed by fringes of material that is more/less dense than the as-grown film, each of which is located at intensity maxima/minima sites, and have negligible topography. Comparing the present results to earlier reports in the literature shows that the thermal gradient across the pattern is influenced by the initial film microstructure, rather than by the thickness. The existence of a minimum period, which is achievable depending on the thermal continuity of the film, is also discussed.

  • 出版日期2015-6-26