摘要

Aim: Chikungunya virus, an arthropod-borne alphavirus, belongs to the Togavirus family, Despite severe epidemic outbreaks on several occasions, not much progress has been made with regard to epitope-based drug design for chikungunya virus. In this study we performed a proteome-wide search to look for a conserved region among the available viral proteins, one which has the capacity to trigger a significant immune response. Materials & methods: The conserved region was analyzed by performing an alignment of sequences collected from sources from varied geographic locations and time periods. Subsequently, the immune parameters for the peptide sequences were determined using several in silica tools and immune databases. Results: Both T-cell immunity and B-cell immunity were checked for the peptides to ensure that they had the capacity to induce both humoral and cell-based immunity. Our study reveals a stretch of conserved region in glycoprotein E2; yet this peptide sequence could interact with as many as seven HLAs and showed population coverage as high as 73.46%. The epitope was further tested for binding against the HLA structure using in silica docking techniques to validate the binding cleft epitope interaction in detail. Conclusion: Although the study requires further in vivo screening, keeping in mind the consistency and reproducibility of the immune system at selecting and reacting to peptide epitopes, this study allows us to claim a novel peptide antigen target in E2 protein with good confidence.

  • 出版日期2012-10