An anisotropic micromechanical-based model for characterizing the magneto-mechanical behavior of NiMnGa alloys

作者:Wang Xingzhe*; Li Fang; Hu Qiang
来源:Smart Materials and Structures, 2012, 21(6): 065021.
DOI:10.1088/0964-1726/21/6/065021

摘要

As a typical ferromagnetic shape memory alloy (FSMA), NiMnGa alloy at room temperature is a heterogeneous material with martensitic variants and a high magnetic anisotropy property to produce a giant magnetic-induced strain and high frequency response. A theoretical model based on micromechanical and thermodynamic theory is proposed to describe the magneto-mechanical behavior of single-crystal FSMAs during the reorientation process of martensitic variants. It follows the well-established Eshelby equivalent inclusion method and the Mori-Tanaka scheme, and incorporates the influence of the material anisotropy and the variant inclusion morphology on the reorientation of the martensite variants. The modified micromechanical model is further applied to characterize the stress-strain behavior and magnetic-field-induced strain during the martensite variant rearrangement process in a single-crystal NiMnGa rod under applied magnetic field and/or mechanical loading. The simulation results show good agreement with the experimental data. The effects of the material anisotropy and inclusion morphology on the magnetoelastic constitutive behavior of FSMAs are discussed.