摘要

Knowing the density of silicate liquids at high pressure is essential to answer questions relevant to the presence of magmas at depth, whether that be in the present Earth or in its earliest times, during differentiation of the planet. Melts have unique physical and chemical properties, which vary as a function pressure, and chemical composition. The focus here will be on in situ measurements of the density of magmas, with a presentation of the available methods and of the main results obtained so far, including why some magmas may be trapped at depth. Understanding the macroscopical physical properties of magmas requires an accurate microscopic structural description. Structural descriptions of compressed magmas are becoming more widely available, from experiments and from theoretical calculations. These structural inputs are used to understand the compression mechanisms at stake in the densification of magmas, e.g. the collapse of voids, coordination increase for the major cations, and bond compressibility. These densification processes profoundly affect not only the physical properties of the melt, but also its chemical properties, i.e. the way element partition between the magma and a metallic melt or between the magma and crystals.

  • 出版日期2016-7-1