Non-invasive measurement of glucose uptake of skeletal muscle tissue models using a glucose nanobiosensor

作者:Obregon Raquel; Ahadian Samad; Ramon Azcon Javier*; Chen Luyang; Fujita Takeshi; Shiku Hitoshi; Chen Mingwei; Matsue Tomokazu
来源:Biosensors and Bioelectronics, 2013, 50: 194-201.
DOI:10.1016/j.bios.2013.06.020

摘要

Skeletal muscle tissues play a significant role to maintain the glucose level of whole body and any dysfunction of this tissue leads to the diabetes disease. A culture medium was created in which the muscle cells could survive for a long time and meanwhile it did not interfere with the glucose sensing. We fabricated a model of skeletal muscle tissues in vitro to monitor its glucose uptake. A nanoporous gold as a high sensitive nanobiosensor was then successfully developed and employed to detect the glucose uptake of the tissue models in this medium upon applying the electrical stimulation in a rapid, and non-invasive approach. The response of the glucose sensor was linear in a wide concentration range of 1-50 mM, with a detection limit of 3 mu M at a signal-to-noise ratio of 3.0. The skeletal muscle tissue was electrically stimulated during 24 h and glucose uptake was monitored during this period. During the first 3 h of stimulation, electrically stimulated muscle tissue consumed almost twice the amount of glucose than counterpart non-stimulated sample. In total, the glucose consumption of muscle tissues was higher for the electrically stimulated tissues compared to those without applying the electrical field.

  • 出版日期2013-12-15