Nanocomposites as novel surfaces for laser desorption ionization mass spectrometry

作者:Aminlashgari Nina; Shariatgorji Mohammadreza; Ilag Leopold L; Hakkarainen Minna*
来源:Analytical Methods, 2011, 3(1): 192-197.
DOI:10.1039/c0ay00531b

摘要

The possibility to utilize nanocomposite films as easy-to-handle surfaces for surface assisted laser desorption ionization-mass spectrometry (SALDI-MS) of small molecules, such as pharmaceutical compounds, was evaluated. The signal-to-noise values of acebutolol, propranolol and carbamazepine obtained on the nanocomposite surfaces were higher than the values obtained on plain PLA surface showing that the nanoparticles participate in the ionization/desorption process even when they are immobilized in the polymer matrix. The advantages of nanocomposite films compared to the free nanoparticles used in earlier studies are the ease of handling and reduction of instrument contamination since the particles are immobilized into the polymer matrix. Eight inorganic nanoparticles, titanium dioxide, silicon dioxide, magnesium oxide, hydroxyapatite, montmorillonite nanoclay, halloysite nanoclay, silicon nitride and graphitized carbon black at different concentrations were solution casted to films with polylactide (PLA). There were large differences in signal intensities depending on the type of drug, type of nanoparticle and the concentration of nanoparticles. Polylactide with 10% titanium oxide or 10% silicon nitride functioned best as SALDI-MS surfaces. The limit of detection (LOD) for the study was ranging from 1.7 ppm up to 56.3 ppm and the signal to noise relative standard deviations for the surface containing 10% silicon nitride was approximately 20-30%. Scanning electron microscopy demonstrated in most cases a good distribution of the nanoparticles in the polymer matrix and contact angle measurements showed increasing hydrophobicity when the nanoparticle concentration was increased, which could influence the desorption and ionization. Overall, the results show that nanocomposite films have potential as surfaces for SALDI-MS analysis of small molecules.

  • 出版日期2011-1