摘要

We have previously shown that persistent a-synuclein overexpression in ventral midbrain of marmoset leads to a distinctive neurodegenerative process and motor defects. The neurodegeneration was confined to caudate putamen dopaminergic fibers in animals overexpressing wild-type (wt) alpha-synuclein. However, A53T alpha-synuclein overexpression induced neurodegeneration that resulted in nigral dopaminergic cell death. Here, we analyze the microglia population in the midbrain of these animals by stereological quantification of lba1 + cells. Our data here show that monkeys overexpressing A53T alpha-synuclein showed a long-term increase in microglia presenting macrophagic morphology. However, wt alpha-synuclein overexpression, despite the absence of dopaminergic cell death, resulted in a permanent robust increase of the microglia population characterized by a range of distinct morphological types that persisted after 1 year. These results confirm that the microglial response differs depending on the type of alpha-synuclein (wt/A53T) and/or whether alpha-synuclein expression results in cell death or not, suggesting that microglia may play different roles during disease progression. Furthermore, the microglial response is modulated by events related to alpha-synuclein expression in substantia nigra and persists in the long term. The data presented here is in agreement with that previously observed in a recombinant adeno-associated virus (rAAV) alpha-synuclein rat model, thereby validating both the findings and the model, and highlighting the translational potential of the rodent model to higher species closer to humans.

  • 出版日期2012-4-19