摘要

The pivotal role played by the interplanetary magnetic field (B) in modulating galactic cosmic ray (GCR) intensity in the heliosphere is described. We show that the inverse correlation observed by Forbush (1958) between GCRs and sunspot numbers (SSNs) is reflected in high correlation between SSNs and B (cc = 0.94). The SSN data are available since 1700 and the derived B data since 1835. The paleo-cosmic ray data are available for several millennia in the form of Be-10 radionuclide sequestered in polar ice. The data of the ion chambers (ICs) at the Cheltenham-Fredericksburg-Yakutsk (CFY) sites are combined to create a data string for 1937-1988. In turn, these data are used to extend the measurements of the low energy GCR ions (%26gt;0.1 GeV) at balloon altitudes at high latitudes in Russia to 1937. These data are then correlated to B and the fit parameters are used to extend the low energy ion data to 1900, creating the instrumental era GCR time series for the twentieth century. The derived GCR time series is compared to Be-10 measured at two sites in Greenland, namely Dye 3 and NGRIP for 1900-2000 to check the internal consistency of datasets for the long-term trend. We find that the annual mean rate (%) for 1965 at NGRIP is an outlier. We replace it with the mean of 1964 and 1965 rates and construct a new re-normalized time series at NGIP, improving the agreement with the derived instrumental era GCR time series for the twentieth century as well. This should encourage its use by heliophysics community for varied applications.

  • 出版日期2013-12-15