摘要

In this article, we intend to investigate the performance of channel access protocols in multi-hop underwater acoustic sensor networks, which are characterized by long propagation delays and limited channel bandwidth. An analytical model specifically designed for contention-based protocols in multi-hop underwater acoustic networks is identified and validated. The model is based on an underwater network model, called string topology network model, which provides a method for computing the expected network throughput and the probability of packets' delivery to the gateway from an arbitrary sensor. This study demonstrates an improvement of an existing model, in which a node is implicitly assumed to be able to transmit two packets at the same time, which is not realistic due to the half-duplex character of underwater acoustic channels. Based on our findings, we propose a modified analytical model and evaluate it using NS-3 simulator. Results show that our analytical model is more precise than the existing one.