摘要

This paper presents the results of a hydrological investigation of four medium scale green roofs that were set up at the University of South Australia. In this study, the potential of green roofs as a source control device was investigated over a 2 year period using four medium size green roof beds comprised of two growth media types and two media depths. During the term of this study, 226 rainfall events were recorded and these were representative of the Adelaide climate. In general, there were no statistically significant differences between the rainfall and runoff parameters for the intensive and extensive beds except for peak attenuation and peak runoff delay, for which higher values were recorded in the intensive beds. Longer dry periods generally resulted in higher retention coefficients and higher retention was also recorded in warmer seasons. The average retention coefficient for intensive systems (89%) was higher than for extensive systems (74%). It was shown that rainfall depth, intensity, duration and also average dry weather period between events can change the retention performance and runoff volume of the green roofs. Comparison of green and simulated conventional roofs indicated that the former were able to mitigate the peak of runoff and could delay the start of runoff. These characteristics are important for most source control measures. The recorded rainfall and runoff data displayed a non-linear relationship. Also, the results indicated that continuous time series modelling would be a more appropriate technique than using peak rainfall intensity methods for green roof design and simulation.

  • 出版日期2014-11-15