摘要

In this work, we explore a promising electroactive polymer (EAP), called ionic polymer-metal composite (IPMC) as a material to use as a multi degree of freedom actuator. Configuration of our interest is a cylindrical IPMC with 2-DOF electromechanical actuation capability. The desired functionality was achieved by fabricating unique inter-digitated electrodes. First, a 3D finite element (FE) model was introduced as a design tool to validate if the concept of cylindrical actuators would work. The FE model is based upon the physical transport processes-field induced migration and diffusion of ions. Second, based upon the FE modeling we fabricated a prototype exhibiting desired electromechanical output. The prototype of cylindrical IPMC has a diameter of 1 mm and a 20 mm length. We have successfully demonstrated that the 2-DOF bending of the fabricated cylindrical IPMCs is feasible. Furthermore, the experimental results have given new insight into the physics that is behind the actuation phenomenon of IPMC.

  • 出版日期2014-1