摘要

The number-conserving quantum phase space description of the Bose-Hubbard model is discussed for the illustrative case of two and three modes, as well as the generalization of the two-mode case to an open quantum system. The phase-space description based on generalized SU(M) coherent states yields a Liouvillian flow in the macroscopic limit, which can be efficiently simulated using Monte Carlo methods even for large systems. We show that this description clearly goes beyond the common mean-field limit. In particular it resolves well-known problems where the common mean-field approach fails, such as the description of dynamical instabilities and chaotic dynamics. Moreover, it provides a valuable tool for a semiclassical approximation of many interesting quantities, which depend on higher moments of the quantum state and are therefore not accessible within the common approach. As a prominent example, we analyze the depletion and heating of the condensate. A comparison to methods ignoring the fixed particle number shows that in this case artificial number fluctuations lead to ambiguities and large deviations even for quite simple examples.

  • 出版日期2009-1