Neuroprotection and reduced gliosis by pre- and post-treatments of hydroquinone in a gerbil model of transient cerebral ischemia

作者:Park, Joon Ha; Park, Chan Woo; Ahn, Ji Hyeon; Choi, Soo Young; Shin, Myoung Cheol; Cho, Jun Hwi; Lee, Tae-Kyeong; Kim, In Hye; Cho, Jeong Hwi; Lee, Jae-Chul; Kim, Yang Hee; Kim, Young-Myeong; Kim, Jong-Dai; Tae, Hyun-Jin; Shin, Bich Na; Bae, Eun Joo; Chen, Bai Hui; Won, Moo-Ho*; Kang, Il Jun*
来源:Chemico-Biological Interactions, 2017, 278: 230-238.
DOI:10.1016/j.cbi.2017.01.018

摘要

Hydroquinone (HQ), a major metabolite of benzene, exists in many plant-derived food and products. Although many studies have addressed biological properties of HQ including the regulation of immune responses and antioxidant activity, neuroprotective effects of HQ following ischemic insults have not yet been considered. Therefore, in this study, we examined neuroprotective effects of HQ against ischemic damage in the gerbil hippocampal cornu ammonis 1 (CA1) region following 5 min of transient cerebral ischemia. We found that pre- and post-treatments with 50 and 100 mg/kg of HQ protected CA1 pyramidal neurons from ischemic insult. Especially, pre- and post-treatments with 100 mg/kg of HQ showed strong neuroprotective effects against ischemic damage. In addition, pre- and post-treatments with 100 mg/kg of HQ significantly attenuated activations of astrocytes and microglia in the ischemic CA1 region compared to the vehicle-treated-ischemia-operated group. Briefly, these results show that pre- and post-treatments with HQ can protect neurons from transient cerebral ischemia and strongly attenuate ischemia-induced glial activation in the hippocampal CA1 region, and indicate that HQ can be used for both prevention and therapy of ischemic injury.