Automatic robotic polishing on titanium alloy parts with compliant force/position control

作者:Du Huapeng; Sun Yuwen*; Feng Deyang; Xu Jinting
来源:Proceedings of the Institution of Mechanical Engineers - Part B: Journal of Engineering Manufacture , 2015, 229(7): 1180-1192.
DOI:10.1177/0954405414567518

摘要

In this article, an automatic robotic polishing technique and system is developed for the polishing of titanium alloy curved parts. By means of a designed compliant end-effector with a force sensor, the robotic polishing system with a position-based explicit force control architecture is first built to perform the polishing operation. Then, a specially designed multi-axis robotic post-processor based on computer-aided design/computer-aided manufacturing is developed to generate the basic position and posture of the polishing tool without any complicated teaching processes. Subsequently, an adaptive Anti-Saturation Integral Separated Fuzzy PI controller, which is able to imitate the manual polishing operation and prevent undesirable vibrations and mechanical collisions, is designed to control the normal contact force. The basic trajectory is changed each time after the current polishing cycle has been finished by online self-learning, and a new basic trajectory is generated for the next polishing cycle. Finally, the effectiveness of the proposed automatic polishing technique is evaluated by actual polishing experiments on titanium alloy (TC11) parts, and the experimental results show that the proposed automatic robotic polishing technique has a perfect control effect on the contact force and thus can achieve a good and uniform surface quality of the part.