摘要

Lake St Lucia in South Africa is part of a UNESCO World Heritage site and a Ramsar wetland of international importance. Like many coastal wetlands worldwide, anthropogenic activities including catchment land-use changes, water diversions/abstractions, and manipulation of the mouth state have significantly affected its functioning over the past century. Questions concerning its sustainability have motivated a reevaluation of management decisions made in the past and of options for the future. A model for the water and salt budgets has therefore been used to investigate "what if' scenarios in terms of past anthropogenic interventions. In particular, simulations allow us to evaluate the effects of diverting the Mfolozi river from St Lucia on the functioning of the system and on the occurrence of various water level/salinity states that drive the biological functioning of the ecosystem. In the past, when the St Lucia estuary and the Mfolozi river had a combined inlet, the mouth was predominantly open. The lake had relatively stable water levels but variable salinities that increased during dry conditions due to evaporative losses and saltwater inflows from the sea. If the mouth closed, the Mfolozi flow was diverted into the lake which reduced salinities and maintained or increased water levels. Simulations indicate that without a link to the Mfolozi the lake system would naturally have a mainly closed inlet with lower average salinities but more variable water levels. During dry conditions water levels would reduce and result in desiccation of large areas of the lake as has recently occurred. We conclude that the artificial separation of the St Lucia and Mfolozi inlets underpins the most significant impacts on the water & salt budget of the lake and that its reversal is key to the sustainability of the system.

  • 出版日期2011-5-30