摘要

Following a deep electromagnetic-acoustic analogy and making use of an overlooked thermodynamic concept of acoustic part of the energy current density, which respectively shed light on the limitations of the near-equilibrium fluid-mechanics equations and the still elusive thermodynamics of electromagnetic fields in matter, we develop a new nonperturbative theory of longitudinal macroscopic acoustic wave propagation allowing for both temporal and spatial dispersion. In this manner, a definitive answer is supplied to the long-standing theoretical question of how the microgeometries of fluid-saturated rigid-framed porous materials determine the macroscopic acoustic properties of the latters, within Navier-Stokes-Fourier linear physics.

  • 出版日期2013-9

全文