Selenoprotein W redox-regulated Ca2+ channels correlate with selenium deficiency-induced muscles Ca2+ leak

作者:Yao, Haidong; Fan, Ruifeng; Zhao, Xia; Zhao, Wenchao; Liu, Wei; Yang, Jie; Sattar, Hamid; Zhao, Jinxin; Zhang, Ziwei*; Xu, Shiwen*
来源:Oncotarget, 2016, 7(36): 57618-57632.
DOI:10.18632/oncotarget.11459

摘要

Selenium (Se) deficiency induces Ca2+ leak and calcification in mammal skeletal muscles; however, the exact mechanism is still unclear. In the present study, both Se-deficient chicken muscle models and selenoprotein W (SelW) gene knockdown myoblast and embryo models were used to study the mechanism. The results showed that Se deficiency-induced typical muscular injuries accompanied with Ca2+ leak and oxidative stress (P < 0.05) injured the ultrastructure of the sarcoplasmic reticulum (SR) and mitochondria; decreased the levels of the Ca2+ channels, SERCA, SLC8A, CACNA1S, ORAI1, STIM1, TRPC1, and TRPC3 (P < 0.05); and increased the levels of Ca2+ channel PMCA (P < 0.05). Similarly, SelW knockdown also induced Ca2+ leak from the SR and cytoplasm; increased mitochondrial Ca2+ levels and oxidative stress; injured SR and mitochondrial ultrastructure; decreased levels of SLC8A, CACNA1S, ORA1, TRPC1, and TRPC3; and caused abnormal activities of Ca2+ channels in response to inhibitors in myoblasts and chicken embryos. Thus, both Se deficiency and SelW knockdown induced Ca2+ leak, oxidative stress, and Ca2+ channel reduction. In addition, Ca2+ levels and the expression of the Ca2+ channels, RyR1, SERCA, CACNA1S, TRPC1, and TRPC3 were recovered to normal levels by N-acetyl-L-cysteine (NAC) treatment compared with SelW knockdown cells. Thus, with regard to the decreased Ca2+ channels, SelW knockdown closely correlated Se deficiency with Ca2+ leak in muscles. The redox regulation role of SelW is crucial in Se deficiency-induced Ca2+ leak in muscles.