摘要

Apple leaf spot caused by the Alternaria alternata f. sp mali (ALT1) fungus is one of the most devastating diseases of apple (Malus x domestica). We identified a hairpin RNA (hpRNA) named MdhpRNA277 that produces small RNAs and is induced by ALT1 infection in 'Golden Delicious' apple. MdhpRNA277 produces mdm-siR277-1 and mdm-siR277-2, which target five resistance (R) genes that are expressed at high levels in resistant apple variety 'Hanfu' and at low levels in susceptible variety 'Golden Delicious' following ALT1 infection. MdhpRNA277 was strongly induced in 'Golden Delicious' but not 'Hanfu' following ALT1 inoculation. MdhpRNA277 promoter activity was much stronger in inoculated 'Golden Delicious' versus 'Hanfu'. We identified a single-nucleotide polymorphism (SNP) in the MdhpRNA277 promoter region between 'Golden Delicious' (pMdhpRNA277-GD) and 'Hanfu' (pMdhpRNA277-HF). The transcription factor MdWHy binds to pMdhpRNA277-GD, but not to pMdhpRNA277-HF. Transgenic 'GL-3' apple expressing pMdhpRNA277-GD: MdhpRNA277 was more susceptible to ALT1 infection than plants expressing pMdhpRNA277-HF: MdhpRNA277 due to induced mdm-siR277 accumulation and reduced expression of the five target R genes. We confirmed that the SNP in pMdhpRNA277 is associated with A. alternata leaf spot resistance by crossing. This SNP could be used as a marker to distinguish between apple varieties that are resistant or susceptible to A. alternata leaf spot.