摘要

In this research the role of stress acting on the rupture of the oxide film on aluminum powder particles during oxidation under non-isothermal conditions was studied. For this purpose, aluminum particles went under TG-DTA heat analysis tests at different heating rates up to 1,300 A degrees C. The results obtained from these tests showed that the major part of the oxidation took place at non-isothermal conditions close to 1,000 A degrees C. The scanning electron microscope also provided information about the rupture behavior of the oxide film under the effect of the stresses resulting during this intense oxidation. The finite element method was employed to study the intensity of the factors generating stress on the oxide film. The results of this simulation regarding the analysis of the imposed stresses showed that the expansion of the melt inside the film and also the shrinkage resulting from the transformation of the oxide structure from gamma to alpha could impose a high rate of stress on this crust during the heating of aluminum powder particles in a non-thermal manner close to the above temperature. Also, with regard to the results obtained from this stress analysis, it was specified that although the rate of the stress resulting from the expansion of the melt inside the oxide film relative to the stress resulting from its shrinkage was much higher quantitatively, this shrinkage was also an important factor in the direction of activating the defects present in the structure of the oxide film played a determining role in the occurrence of its rupture.

  • 出版日期2014-10