摘要

This study focuses on reducing the cathode polarization resistance through the use of mixed ionic electronic conductors and the optimization of cathode microstructure to increase the number of electrochemically active sites. Among the available mixed ionic electronic conductors (MIECs), the layered perovskite GdBa0.5Sr0.5CoFeO5+delta (GBSCF) was chosen as a cathode material for intermediate temperature solid oxide fuel cells owing to its excellent electrochemical performance and structural stability. The optimized microstructure of a GBSCF-yttria-stabilized zirconia (YSZ) composite cathode was prepared through an infiltration method with careful control of the sintering temperature to achieve high surface area, adequate porosity, and well-organized connection between nanosized particles to transfer electrons. A symmetric cell shows outstanding results, with the cathode exhibiting an area-specific resistance of 0.006 Omega cm(2) at 700 degrees C. The maximum power density of a single cell using Ce-Pd anode with a thickness of similar to 80 mu m electrolyte was similar to 0.6 Wcm(-2) at 700 degrees C.

  • 出版日期2015-9-21